Although the expressions for the α_i and β_i seem rather forbidding in appearance, in fact the 1620 can evaluate c in a very few seconds once the sum of the intensities is known. Furthermore if anomalous scattering is not important then α_4 , α_5 , α_6 , β_4 , β_5 , β_6 are all zero.

The author wishes to express his appreciation of the support given to this work by the National Cancer Institute of the National Institutes of Health through their research grant, CY-4315. He also thanks Dr. Wesley Brittin for a helpful discussion.

References

EILAND, P., et al. (1957). Acta Cryst. 10, 303. HASTINGS, C. (1955). Approximations for Digital Computers, p. 186. Princeton University Press. KARTHA, G. (1953). Acta Cryst. 6, 817.

WILSON, A. J. C. (1942). Nature, Lond. 150, 152.

Acta Cryst. (1963). 16, 316

The crystal structure of β -K₃Bi^{*}. By Donald E. Sands,[†] David H. Wood and William J. Ramsey, Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 14 September 1962)

K₃Bi undergoes a phase change at 280 °C. The low temperature form, α -K₃Bi, has the Na₃As, DO₁₈, type structure (Brauer & Zintl, 1937). The structure of the high temperature modification, β -K₃Bi, determined from powder patterns taken at 400 °C., is of the BiF₃, DO₃ type.

Samples of K₃Bi were crushed in a dry box and loaded into 0.3 mm. quartz capillaries. Powder photographs were taken at about 400 °C. in a Central Research Laboratories high temperature powder camera using Cu K a radiation ($\lambda = 1.5418$ Å). These patterns were indexed as face-centered cubic with $a = 8.805 \pm 0.005$ Å. The density calculated on the basis of four K₃Bi formula units per unit cell is 3.17 g.cm.⁻³.

The symmetry and composition of this phase suggest a structure of the DO_3 type of BiF_3 and this structure was ultimately confirmed. Among other compounds, Li3Bi (Zintl & Brauer, 1935) and β -Li₃Sb (Brauer & Zintl, 1937) also have this same structure. The atoms occupy the following positions of space group O_h^5 -Fm3m (International Tables for X-ray Crystallography, 1952):

Ŀ	Bi	\mathbf{in}	4a:	(0,	0,	0)	+ face	centering,	
	77		47	/1	1	1 \		1	

The intensities of the first 14 lines of a typical powder pattern were estimated by visual comparison with a standard scale. After correction of the intensities by the Lorentz-polarization and multiplicity factors, structure factors were obtained for each of the 16 contributing forms. These data were used in a least squares refinement to obtain isotropic temperature factors for each species

$\mathbf{T}_{\mathbf{r}}$	able 1. Pow	der pattern	of β -K ₃ Bi	
hkl	d_o	d_c	I_o	I_c
111	5.07 Å	5.08 Å	75	66
200	4.36	4.40	62	40
220	3.10	3.11	100	160
311	2.647	2.655	89	77
222	2.540	2.539	27	22
400	2.195	$2 \cdot 200$	45	34
331	2.013	2.020	48	46
420	1.964	1.969	30	39
422	1.795	1.797	55	71
$\left. \begin{array}{c} 511\\ 333 \end{array} \right\}$	1.693	1.695	40	4 0
44 0 ´	1.556	1.557	25	21
531	1.489	1.488	37	41
$\left. \begin{smallmatrix} 442\\600 \end{smallmatrix} \right\}$	1.468	1.468	19	22
620 ´	1.396	1.392	27	26

of atom and a scale factor. The atomic form factors of James & Brindley (1931) for neutral atoms were used in the calculated structure factors. The reliability coefficient, $R = \Sigma |F_o - F_c| / \Sigma |F_o|$, was 0.10 after these computations. The isotropic temperature factors which resulted are 2.2 Å² for Bi, 13.9 Å² for K_I, and 9.5 Å² for K_{II}. The powder pattern is listed in Table 1; the the intensities have been normalized so that the maximum I_0 is 100.

References

- BRAUER, G. & ZINTL, E. (1937). Z. phys. Chem. B, 37, 323.
- International Tables for X-ray Crystallography (1952). Vol. 1, Birmingham: Kynoch Press.
- JAMES, R. W. & BRINDLEY, G. W. (1931). Z. Kristallogr. 78, 470.
- ZINTL, E. & BRAUER, G. (1935). Z. Elektrochem. 41, 297.

^{*} This work was performed under the auspices of the U.S. Atomic Energy Commission.

[†] Present address: Department of Chemistry, University of Kentucky, Lexington, Kentucky.